Digital Cuttings

Consistently measured digital data from drill cuttings:

Enhanced reservoir characterization Regional sweet spot identification Digitization of rock repositories

Benefits & Applications

Digital-Cuttings[™] creates a permanent high-resolution digital record of the rock sample, generating a rich, analytics-ready dataset that can easily be upscaled into regional and reservoir scale subsurface models, accurately calibrate rock physics models, or assist in predicting near-wellbore completion performance, which is suitable for all cuttings or core samples, no matter the vintage.

Surface Logging Services Drilling Solutions Lab Studies Innovation Hub

www.geolog.com

At GEOLOG we are "Passionate about cuttings". Cuttings are an invaluable source of quality data that can be consistently measured and converted into a digital record, stored in a cloud-based platform and easily accessed when required. GEOLOG's patented Digital-CuttingsTM workflow offers a seamless and consistent approach to generating quality, measured rock and fluids data thus providing reliable quantitative subsurface data and valuable interpretations such as lithology, Litho-BriteTM (Lithofacies) and hydrocarbon fluids when combined with GEOLOG's G9+ technology.

If the DIGITALIZATION of subsurface data is important, then GEOLOG's DIGITAL-CUTTINGS™ service is for you.

At the sample scale, the Digital-Cuttings[™] workflow offers:

Digital white light image

Particle segmentation image

- High-resolution digital images in white light and UV light
- Particle segmentation for particle size & shape data
- Quantitative color extraction data
- Quantitative XRF major & minor elemental data
- Seamless addition of other analytical data e.g., XRD, TOC, GeoPyrolysis or G9+
- Lithology interpretation
- Litho-Brite[™] (lithofacies) interpretation

1.					MAIN D	LEMENTS	(%)												T	RACE ELEN	HENTS IND	and i											
DEPTH	\$902	AU208	Fe203	K20	CaO	MgO	5	P205	1102	MaO	a	As	Cu	N	v	Ma	Sr	- 16	28	37	-	Th	U	0	Ca	Nb	Nd	6	64	64	La	84	COR
2047	\$5.372	38.362	4.66	2,791	3.523	1.337	0.584	0.171	0.609	0.099		25.3	29.7	40.1	111.2	38.5	111.6	25.4	91	290.5	65.3	30.1	3.2	201.7	32.3	8.4	26.9	48.2	12	6.3		690.9	90
2277	\$7,358	15.126	5.053	1.902	0.451	0.794	0.382	0.095	0.888	0.063		9.5	38.7	59	258.6	7	54.4	23.9	143	210.4	79.8	11.1	2.9	549.5	42.5	12	9.7	44	17.6	7.1		733.3	53
2360	54.492	15.147	6.979	2.43	1.906	1.517	0.229	0.301	0.887	0.112		12.8	44.2	66.9	178.7	7.1	126.3	м	149.3	185.3	105.2	13.5	1.9	121.6	41.2	13.4	39.5	42.1	20.2	8.9		683.6	117
2435	\$2,717	14.812	8.377	2.211	2,906	1.618	0.883	0.176	0.549	0.11		25.6	35.7	63.5	174.5	5.6	134.1	40.8	140.6	383.2	99.1	8.7	1.9	115.3	41.7	11.2	26.7	45.9	20.1	9.8		852.7	100
2465	64.585	8.992	5.357	2.175	2.355		0.375	0.352	0.498	0.069	190.2	12.9	28.9	38	339	34.4	82.5	23.3	81.1	205.9	46.7	7.6	2.4	\$45.6	36.6	7.3	24.6	41.6	20.9	7.5		909.6	65
2475	61.3	11.489	5.824	2.544	1.829	0.687	0.307	0.365	0.558	0.074		15	32.6	47.7	313	11.5	102.7	29.1	91.3	129.8	67.3	20.6	2.8	113.2	36.9	8.9	27	28.8	12.8	8.1		667.8	85
2505	\$2.585	13.817	8.708	2.01	1.59	1.298	0.338	6.232	0.85	0.311		38.7	41.2	52.4	172.8	5.6	130.6	м	129.8	196.3	91	9.5	2.8	546.5	40.2	12.7	47.6	50.8	59.9	50.8		\$46.5	87
2555	\$3.929	13.585	9.175	1.853	1.634	1,798	0.71	0.224	0.747	0.347		12.5	25.4	54.4	253	6	108.5	29.5	114.4	365.8	78		1.8	130.8	40.7	10.5	40.8	34.4	17.8	11.7		680.9	91
2595	41.899	38.757	8.699	1.731	10.387	2.673	0.309	0.282	0.663	0.113		38.7	31.3	46.2	132.6	5.6	177.9	25.7	302.4	258.6	73.2		2.7	81	15.5	50	4.7	60.1	34.5	9.3		853	23
2525	52,799	38,707	4.877	1.6	10.117	2.889	0.169	0.347	0.67	0.074		9.7	38.1	42.4	121	5.4	192	12.4	83.9	180.3	59	25	2.7	83.7	25.8	9.6	15.9	68.1	12.8	5.7		502.5	23
2730	51.838	15.205	6.724	2.495	1.423	1.463	0.205	0.155	9.909	0.052		14.9	38.2	52.4	178.2	2.2	135.1	28.5	128.9	206.2	107.9	10.4	4.6	107.9	40.2	13.5	35.8	58.6	20	8.7		701.5	112
3860	53.82	12.67	6.057	2.629	1.75	1.49	0.471	6.173	4.729	0.061	197.4	9.3	37.3	52	157.8	8.5	108.2	22.5	312.9	150.9	81.9	8.4	1.9	126.1	37.2	10.6	37.9	45	17.1	7.9		687.5	92
3870	48.161	9.626	5.87	1.458	9.719	8.778	0.209	0.305	0.62	0.061		5.1	22.2	49	308.4	1.6	212.1	15.4	78.1	138.4	58.7	6.2	1.2	118.2	29.5	9.4	28.5	66.2	12.5	6.8		723.6	30
2580	73.596	7.919	2.842	0.995	0.668		0.254	0.134	0.41	4.625	163.8	46.3	36.4	34.8	111.9	19.3	62.6	96.4	53.5	86	32.3	3.6	3	169.7	25.9	6.2	3.8	26.4	6.9	5		576.6	60
2890	67.133	9,234	4.89	1.005	1.368	0.828	0.264	0.132	0.473	0.006	292.6	4.2	26	34.6	204.3	15.3	88.9	17	53.6	127.3	34.9	7.8	1.4	242.9	33.3	6.6	22.1	39.1	10	7.2		462.1	72
2900	68.875	11.141	3.91	1.582	1.153	1.196	0.202	0.352	9.545	0.041		5.2	36.8	39	86.9	2.5	127.7	16.5	77.8	155.8	61	7.7	2.8	185.6	30.1	8.3	28.3	27.4	11.2	5.8		668.1	74

Screenshot of a typical XRF data sheet showing 10 major elements and 22 minor elements

WL		5 12			100	130		1		Ba	g Depth			Shifted	Depth		UV						
1 1 44	138			£,	111	商	1	- Re-		10880-	-10910 ft N	MD	1	0880-10	910 ft MC)							
77 E			统工		1.52		10																
2.2				書	A.		12	DR.	-	Particle Sta	an Derivator By Geo	~		Particle See	Intributor by Arts								
2. Katha		51		29			5.2	12		4													
100 20. 9					LEAD		10	1	1				e**							<u></u>	4.00		
296.71		1		71		28	0.0	17.	1-				1.										
CINE A	SE	1	10		Stor S		1	164	1	4													
181			24			微 礼。	52	200	e		4 04	-	-	-1 ₁₀₀	a more i	Change Land							
S and a	18			1			15	1															
5003 yrs		621	\mathbb{C}_{2}	24	>		10	12.									9932.919			E.			
	XRF	Major	Elem	ental	Oxide	es (%)					Calc	culated (Gamma	Ray			XRE) Bulk Lith	ology				
Si Al Fe K Ca Mg S P Ti Mn												XRF-	CAPI			Tot. Cark	o. Tot	. Silic.	Tot. Access	. Tot. E	vap.	Tot. Clays	
64.46 7.19	1.57	2.07	6.67	1.07	0.54	0.14	0.49	0.03				67	.49				15.60	7	2.30	NQ	NC	2	12.10
									VDE Trace Elements (nnm)														
											XKF I	race Ele	ments ((ppm)	1								
Cl	As	Cu	N	li	V	Mc)	Sr	Pb	Zn	Zr	Rb	Th	U	Cr	Co	Nb	Nd	Cs	Ga	Gd	La	Ba
7900.00	NQ	34.90	36.	.80	52.70	4.60	2	10.80	1.10	36.80	216.10	62.90	6.10	2.50	51.80	NQ	8.20	8.20	20.70	8.10	3.50	NQ	2 793.00
			-												Litho F	PritoTM	rada	/		D	ch av		
	RGE	Color	' Extra	actior	١			YUV	Color	Extract	ion	Drightr			LIUNO-E	snie… c	Loue:			D.	_CN_dx		
Average	Ave	erage	Ave	erage	Nor	mali-	Av	erage	Aver	age	Average	ынунц	less				Lithof	acies l	Descrip	otion:			
Average Average Average Normali- Red Green Blue zed Red Y 92 19 90 88 89 85 2 34 92 19									l	J	V			Ave	rage Bri	ghtnes	s = 94.61.	Conf	ined st	acked cha	nnel sa	nds, c	clean,
Red Green Blue Zed Ked Y 92.19 90.88 89.85 2.34 92.19									90.	88	89.85	91.5	3			high (energy wi	th littl	e evide	ence of and	oxia.		
Example s	amp	le card	l disp	lay a	s part	ofa	dowr	nhole	digital	sampl	e catalo	gue											

Example 1: Digitalization of a major Cuttings Repository: example North Slope, Alaska

- 100's of wells & 1000's of cuttings samples.
- Different vintages of cuttings from the 1940s to the recent.
- Full digital record of every sample image, color extraction, elemental & liquid hydrocarbon quantification.

Analytical consistency.

Umiat-11 well. Full, Digital-Cuttings[™] Data Summary Chart of a 1,500ft 1940's vintage vertical well, North Slope Alaska. The data display includes: Tops, SP curve, Cycle interpretation, Lithology, CGR, XRD, Resistivity, Color Extract, Brightness, Hydrocarbon Fluid & Source Rock facies data (G9+) and elemental anoxic, lithology, and marine indicators.

Umiat-11 well, Alaska North Slope. Good correlation (-ve) between Brightness and Total Clays (%) suggesting brighter phases (e.g. upper Torok & Torok/Nanushuk boundary) are 'cleaner'.

Pristane/Phytane biomarker data from G9+ analyses of cuttings samples as part of a Digital-Cuttings[™] workflow, Umiat-11 well Alaska North Slope. Note that a more reducing source rock depositional environment is indicated from the results.

Example 2: Using a Digital-Cuttings[™] based approach to predict reservoir performance, Delaware Basin, New Mexico, USA

- 6 Lateral wells & >1,200 cuttings samples.
- 2 main reservoir benches.
- Litho-Brite[™] framework leading to 'good rock vs bad rock' interpretation & facies architecture predictions.
- Strong correlation with quantitative mud-gas data.
- Lateral wells with > proportion of 'good rock' out-performing wells with < proportion of 'good rock' facies.

Lateral 1:70% 'good rock' (green colors)

Lateral 2: <10% 'good rock' (green colors)

É	۳ ع			5																				_																			_
5	o rae	~	M	W	\sim	\sim	~~~	\sim	~		\sim	\sim		~		~	_	\sim	~	\sim			\sim	-	~	\sim		<u>_</u>	\sim	\checkmark	_	\sim	_		\sim		~	\sim	\sim	~		/	5
¥	0 radio 10	ka _{v1}			mL	Y.W		~~	\sim	/		~		\sim		A			~	\checkmark	~	~			\sim		~	~	~	~	\sim	_	<u> </u>	~	\sim		~		~	_	$\overline{}$	_	2
ghtness	30				-			11.														1	-																			_	-
ä	0		-	mth		ihmii								ļH	Н			Н											Ш		н			H									-
Total Gas	800			M	ha	1.4	. Lul				A	,JI	A.M						-	M	للس	.		M	4	Mu																	-
Lithofacies																																											
Gam ma	0 GANY 200	l www	hill	hy	and the state of the	and stars	y)44-444	- 	an a	and the state	- Y-w-	Yarrak	r ha	¶~~~~~	u (nada)			wyw	~~~»	ta p Hanse		-ter (ter Brad		m		Marine		where		hornow	وساري	tan Jarthan	يانو _{ر مو} يانه		hand	*~1~	~ <u>~</u> ~~	www.		••••••(\.	~~~~~		
Formation Tops			3rd Bone Spring Carbonate		Harkey Sand																																						
٩٢.																																											
Depth	100 CE UL	11100	11200	11300	11400 -	11600		11900 -	- 0002	12100	12200	12300	12500	12600	12700	12300	00671	13000	13100	13300	13400	13500 -	13600	13800 -	13900	- 00014	H100 H	14300	- 14400	14500	14600	100 1	14900	00054	15100 I	15200	15300	15400	15500	15600	- 00731	15900	

2 Lateral wells from the Harkey Mills Sand bench of the Bone Spring Formation, Northern Delaware Basin, New Mexico, USA. The black line is the top Harkey Mills Sand pick for each Lateral well. Each plot includes MD (ft), tops, GR, Litho-Brite[™] (green to brown colored zones), Brightness & anoxia elemental indicators. Green zones indicate channel-fill sands and relate to 'good rock', while brown colors indicate overbank deposits and relate to 'bad rock'. When put on production Lateral 1 significantly outperformed Lateral 2, due to better completion stage performance in the higher proportion of 'good rock'. Each Lateral is approx. 5,000ft in length from the top Harkey Mills Sand pick.

Example 3: NOC requires better near-wellbore rock definition in key exploration well

• 400+ cuttings samples

- \bullet Litho-Brite^{\rm TM} interpretation provided a better reservoir definition
- Image analysis revealed a change in particle shape & size through the reservoir interval.
- Good correlation with flow units

Full, Digital-Cuttings[™] Data Summary Chart of a 5000m vertical well, offshore GOM. The data display includes: Tops, Lithology, Litho-Brite[™] GR, CGR, XRD, Image Analysis, Color Extract, Brightness and elemental lithology, anoxic and marine indicators.

www.geolog.com